Scientific Disagreement & Text Analysis

National Yang Ming Chiao Tung University, 2023-11-02

Charles H. Pence

@pence@scholar.social

Outline

- 1. Ambiguity and disagreement in biodiversity and taxonomy
- 2. What do we do about it?
- 3. Empirical analyses: taxonomy corpus
 - 3.1 Corpus construction
 - 3.2 Topic modeling
 - 3.3 Document vectors and stylometry
 - 3.4 Future ideas

The take-home: There's a strong sentiment in biology and philosophy that disagreement is a serious problem for conservation: let's test it!

Biodiversity and Taxonomy

A Balance

The concept of biodiversity has to be:

- Larger than just single (charismatic) species (to capture ecological relations)
- Smaller than "life itself" (to give us something that it is possible to conserve)

The Hunt for Indicators

- species richness (with phylogenetic-distance corrections?)
- diversity of traits or characters
- structural diversity of ecological communities
- diversity of ecological niches
- genetic diversity

Biodiversity and Taxonomy

And any biodiversity studies relying on species inventory will inherit the **rampant uncertainty and disagreement** found in taxonomy!

Taxonomy anarchy hampers conservation

The classification of complex organisms is in chaos.

Stephen T. Garnett and Les Christidis propose a solution.

What to Do?

Response 1: Fundamentalism

In the biological and biomedical sciences, what we will call the Definitional Consensus Principle has dominated the design of data discovery and integration tools:

Definitional Consensus Principle (DCP): The design of a formal classificatory system for expressing a body of data should be grounded in a consensus about the definitions of the entities that are being classified. (Sterner et al. 2020, p. 2)

Response 1: Fundamentalism

We may, then, start from the observations there made [in the *Poetics*], and the stipulation that language to be good must be clear, as is proved by the fact that speech which fails to convey a plain meaning will fail to do just what speech has to do. (*Rhetoric* 1404bl, Aristotle 1984)

Response 2: Skepticism

Put bluntly, the position that this paper will argue for is that biodiversity is to be (implicitly) defined as what is being conserved by the practice of conservation biology. (Sarkar 2002, p. 132)

Response 2: Skepticism

Biol Philos DOI 10.1007/s10539-014-9426-2

Put bio by

Save the planet: eliminate biodiversity

Carlos Santana

HPLS (2019) 41:15

https://doi.org/10.1007/s40656-019-0252-3

ORIGINAL PAPER

Taxonomy and conservation science: interdependent and value-laden

Conservation biology differs from most other biological sciences in one important way: **it is often a crisis discipline.** Its relation to biology, particularly ecology, is analogous to that of surgery to physiology and war to political science. In crisis disciplines, one must act before knowing all the facts; crisis disciplines are thus a mixture of science and art, and their pursuit requires intuition as well as information. (Soulé 1985)

Common response: Ethical value judgments are acceptable in conservation, but should be **kept out of** taxonomy.

But what if taxonomy is **just as value-laden** as conservation biology?

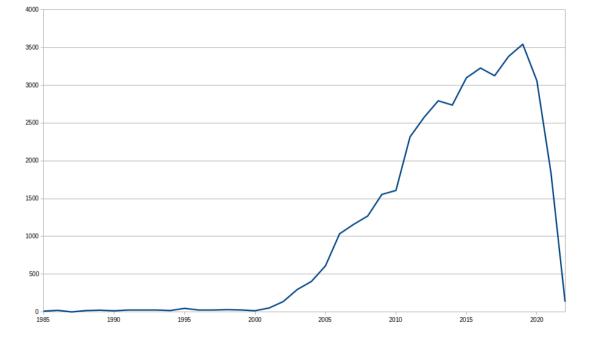
Now in progress: case studies and empirical exploration

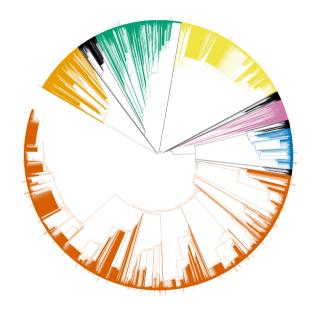
Empirical Tools

Zootaxa	Magnolia Press	31,348
Σοσιαλα	e e	•
ZooKeys	Pensoft	4,940
PhytoKeys	Pensoft	820
Journal of Hymenoptera Research	Pensoft	382
MycoKeys	Pensoft	315
Zoosystematics and Evolution	Pensoft	153
Insecta Mundi	Center for Systematic Entomology	1,367

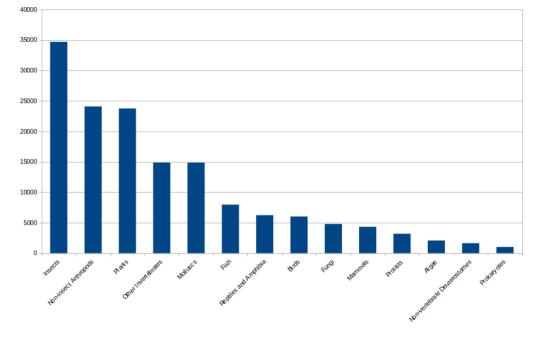
Center for Systematic Entomology

Museum National d'Histoire Naturelle


Size


1.105


Publisher


Journal

European Journal of Taxonomy

Topic Modeling

Briefly: a kind of unsupervised dimensionality reduction that you can run on a corpus of text. Take documents, normally locations in a 172M-dimensional space (number of word types), and reduce that to 125-D.

Interpreting a Topic

Topic 16: popular in mammals

- 0.027*"colombia"
- 0.016*"specie"
- 0.013*"type"
- 0.013*"peru"
- 0.010*"locality"
- 0.010*"venezuela"
- 0.010*"ecuador"

- 0.009*"panama"
- 0.008*"distribution"
- 0.007*"brazil"
- 0.007*"key"
- 0.006*"rica"
- 0.006*"del"
- 0.006*"costa"

- 0.006*"genus"
- 0.006*"male"
- 0.006*"america"
- 0.006*"san"
- 0.006*"neotropical"
- 0.005*"cat"

Interpreting a Topic

Topic 16: popular in mammals

- 0.027*"colombia"
- 0.016*"specie"
- 0.013*"type"
- 0.013*"peru"
- 0.010*"locality"
- 0.010*"venezuela"
- 0.010*"ecuador"

- 0.009*"panama"
- 0.008*"distribution"
- 0.007*"brazil"
- 0.007*"key"
- 0.006*"rica"
- 0.006*"del"
- 0.006*"costa"

- 0.006*"genus"
- 0.006*"male"
- 0.006*"america"
- 0.006*"san"
- 0.006*"neotropical"
- 0.005*"cat"

Okay: Central and South American collection sites

Topic 31:

- 0.016*"male"
- 0.016*"genitalia"
- 0.013*"specie"
- 0.009*"female"
- 0.009*"fig"
- 0.008*"brown"
- 0.008*"lepidoptera"

- 0.007*"scale"
- 0.007*"long"
- 0.006*"slide"
- 0.006*"white"
- 0.006*"line"
- 0.006*"new"
- 0.006*"bursae"

- 0.006*"short"
- 0.005*"dark"
- 0.005*"coll"
- 0.005*"forewing"
- 0.005*"holotype"
- 0.005*"leg"

Cautious hypothesis: Lepidopteran anatomy, especially reproductive

Interpreting a Topic

But wait.

Our lepidopteran reproductive anatomy topic is unusually significant in one group... in papers that mention molluscs.

Interpreting a Topic

But wait.

Our lepidopteran reproductive anatomy topic is unusually significant in one group... in papers that mention molluscs.

...too many bursas!

Some Cool Topics

Topic 9: traditional specimen collection terms

- 0.029*"specie"
- 0.012*"forest"
- 0.012*"habitat"
- 0.010*"area"
- 0.008*"find"
- 0.007*"collect"
- 0.007*"site"

- 0.007*"study"
- 0.007*"record"
- 0.006*"population"
- 0.006*"range"
- 0.006*"high"
- 0.005*"specimen"
- 0.005*"occur"

- 0.005*"know"
- 0.004*"individual"
- 0.004*"region"
- 0.004*"number"
- 0.004*"sample"
- 0.004*"distribution"

Popular in every taxon except non-insect arthropods, fish, and fungi.

Some Cool Topics

Topic 64: molecular phylogenetics

- 0.021*"specie"
- 0.017*"sequence"
- 0.016*"analysis"
- 0.011*"molecular"
- 0.010*"dna"
- 0.008*"phylogenetic"
- 0.007*"tree"

- 0.007*"clade"
- 0.007*"gene"
- 0.007*"specimen"
- 0.007*"study"
- 0.007*"morphological"
- 0.006*"support"
- 0.006*"group"

- 0.006*"genetic"
- 0.006*"coi"
- 0.006*"datum"
- 0.006*"base"
- 0.005*"table"
- 0.005*"population"

Among the **top-20 most significant probabilities** in reptiles and amphibia, birds, fish, fungi, and mammals; top-5% in every other group

Close reading of a number of papers where we know that taxonomic disagreement is taking place

Eaxmple: the "disagreement" list:

- critique
- doubt
- opinion
- disagree
- redundant
- reject
- rebuttal

- debate
- invalid
- misunderstanding
- misconception
- allegation
- allegedly

- mistake
- obsolete
- error
- misclassify
- erroneous
- contentious

In the end, we prepared four lists: terms referring to epistemic values, disagreement, pejorative evaluation, and more general taxonomic change

Ask the topic model: what topics are likely to select words from our lists of disagreement and related terms?

Ask the topic model: what topics are likely to select words from our lists of disagreement and related terms?

- Disagreement: Topic 43
- Epistemic values: Topic 91
- Pejorative terms: Topics 43 and 120

Topic 43 (disagreement, pejorative)

- 0.015*"specie"
- 0.011*"name"
- 0.010*"description"
- 0.010*"new"
- 0.008*"publish"
- 0.007*"author"
- 0.007*"nomenclature"

- 0.007*"code"
- 0.007*"publication"
- 0.006*"type"
- 0.006*"article"
- 0.006*"zoological"
- 0.006*"original"
- 0.006*"synonym"

- 0.006*"work"
- 0.006*"list"
- 0.006*"valid"
- 0.005*"international"
- 0.005*"available"
- 0.005*"note"

The terms you use to present a new species and to discuss whether a species is a synonym

Topic 120 (pejorative)

- 0.018*"character"
- 0.013*"genera"
- 0.011*"taxon"
- 0.011*"group"
- 0.010*"specie"
- 0.010*"genus"
- 0.009*"phylogenetic"

- 0.008*"include"
- 0.007*"analysis"
- 0.007*"family"
- 0.007*"relationship"
- 0.005*"phylogeny"
- 0.005*"clade"
- 0.005*"morphological"

- 0.005*"classification"
- 0.005*"support"
- 0.005*"press"
- 0.005*"new"
- 0.005*"consider"
- 0.004*"present"

The terms you use to argue about ranking of a clade

Topic 91 (epistemic value)

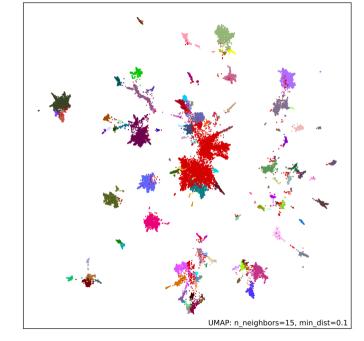
- 0.038*"setae"
- 0.022*"margin"
- 0.021*"article"
- 0.019*"long"
- 0.017*"length"
- 0.013*"pereopod"
- 0.010*"fig"

- 0.010*"seta"
- 0.010*"simple"
- 0.009*"propodus"
- 0.009*"short"
- 0.009*"male"
- 0.008*"basis"
- 0.008*"female"

- 0.008*"specie"
- 0.008*"inner"
- 0.008*"robust"
- 0.007*"distal"
- 0.007*"uropod"
- 0.007*"outer"

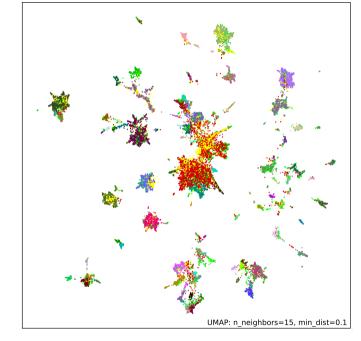
...decapod crustaceans?

More precision?


It'd be nice to distinguish between more precise uses of the kinds of terms in these topics—e.g., between **describing** new species and declaring species to be synonyms

Document Vector Model

Train a model that represents the words in our corpus using vectors in a 100-dimensional space,¹ and then represent each document as a vector within that same space.²


¹technically: a Word2Vec model using hierarchical softmax

²technically: a Doc2Vec model, which infers vector representations of documents by sampling a sliding window of words

Finding disagreement

Then: represent our disagreement terms as vectors within this space, and find the documents that are located "closest" to them!

Disagreeing about what?

Which taxa are you more likely to discuss in papers that are in the "disagreement" area of the vector space? Extract all species names³ from the top 5,000 and bottom 5,000 documents, and compare relative risk.

³technically: using the excellent gnfinder package

Disagreement by taxon

More disagreement:

Mammals (\approx 4), Birds (3), Fungi (3), Fish (2)

Less disagreement:

Insects (≈ 0.5)

Talking about disagreement

Other than disagreement words, what words distinguish the "disagreement" papers from the "non-disagreement" papers?⁴

⁴technically: apply the Craig Zeta algorithm to the top-5,000 and bottom-5,000 documents

Talking about disagreement

Disagreement:

- appear
- note
- consider
- north
- revision
- probably
- lectotype
- list
- suggest
- range

synonym

- synonymcase
- non
- see
- early
- synonymy
- western
- available
- european
- population

Non-Disagreement:

- china
- online
- issn
- copyright
- print
- male
- figs
- edition
- holotype
- introduction

- nov
- new
- margin
- lateral
- accept
- dorsal
- eye
- deposit
- length
- head

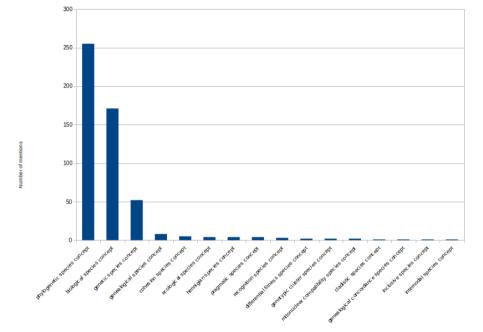
Coming Soon

Geocoding: how do all these parameters correlate with mentions of geographic locations?

Questions?

charles@charlespence.net https://pencelab.be

@pence@scholar.social


Phylogenetic Species Concept	Differential Fitness Species Concept
Genic Species Concept	Compilospecies Concept
Cohesion Species Concept	Cladistic Species Concept
Genealogical Concordance Species Concept	Hennigian Species Concept
Genotypic Cluster Species Concept	Internodal Species Concept
Genetic Species Concept	Mitonuclear Compatibility Species Concept
Ecological Species Concept	Pragmatic Species Concept
Recognition Species Concept	Inclusive Species Concept

Phylo-Phenetic Species Concept

Genealogical Species Concept

Biological Species Concept

Biosimilarity Species Concept

